Course Type	Course Code	Name of Course	L	Т	Р	Credits
DE	NFMD512	Thermochemical Conversion of Solid Fuels	3	0	0	3

Prerequisites: Knowledge of polymer science, organic chemistry, fundamentals of physics, integral and differential calculus.

Course Objective

The main aim of the course is to

- Give detailed information about the utilization potential of Biomass and Coal,
- Their Conversion technologies, applications and challenges in various industries.

Learning Outcomes

At the end of this course, students will have the knowledge of

- conversion technologies of coal and biomass to various products
- characterization of obtained product and their properties
- applications to various industries

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Introduction to Bioenergy; Biomass harvesting; Availability; Refuse Derived Fuel; Classification of biomass feedstock: First, second and third generation biofuels. Classification of coal, Assessment of coal and biomass for thermochemical conversion processes.	7	Students will get an overview of coal and biomass potentials.
2	Characterization of feedstocks; Physicochemical properties, Ultimate and Proximate analysis, Compositional analysis, Calorific value; Thermal analysis of organic and inorganic composition of Coal and Biomass by Thermogravimetric Analysis (TGA), Derivative Thermogravimetry (DTG), Differential Scanning Calorimetry (DSC), differential thermal analysis (DTA), Ash Fusion Temperature.	9	Students will learn various characterization techniques for coal and biomass for their applicability to various technologies.
3	Biomass compaction (briquetting and pelletization); Biofuel quality up-gradation; Coal and Biomass blends; Fuel and emission quality norms. Thermochemical Processes (combustion, gasification, pyrolysis, partial oxidation, auto-thermal reforming). Technologies for the production of biofuels like bio-char, synthesis gas, bio-hydrogen, ethanol, butanol, biogas, methanol, dimethyl ether and paraffinic fuels, etc.	9	This will provide an overview of various conversion Technologies for Coal and Biomass followed by their by-products and its up gradation.

4	Biomass-fueled combustion devices for cooking and heating applications. Utilization of biomass in external combustion engines including steam turbine power plant and Gas turbine, Integrated Gasification Combined Cycle (IGCC):	9	This will provide the information about utilization of products in Thermal and metallurgical Purposes.
5	soil ameliorant, wastewater treatment, Carbon sequestration, and reducing agent for the metallurgical purpose. Case studies for setting up biomass-based small power plant (~ 1MW) capacity for rural electrification, Briquette making plants, Gasification industries, analysis of carbon neutral and carbon credit.	8	Different case studies of product Utilization.
	Total	42	

Text Books:

- 1. Jay J. C., Biomass to Renewable Energy Processes, Taylor and Francis, CRC Press, 2018
- 2. Konur O., Bioenergy and Biofuels, Taylor and Francis, CRC Press, 2018

Reference Books:

- 1. Prabir Basu, Biomass Gasification, Pyrolysis and Torrefaction Practical Design and Theory Book Third Edition 2018
- G.Tchobanoglous, H.Theisen, S.V.Tchobanoglous, G.Theisen, H.V.Samuel, Integrated Solid Waste Management: Engineering Principles and Management issues, New York, McGraw Hill, 1993.
- 3. Mukunda, H. S., Understanding Clean Energy and Fuels from Biomass, Wiley India, 2011
- 4. Coal Gasification and Its Applications, David Bell Brian Towler Maohong Fan, 1st Edition November 2010